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A wide range of network-intensive applications, including distributed large language model (LLM)
training, high-frequency trading (HFT), and content delivery networks (CDNs), require a large amount of
data movement and/or have a tight time budget. As network bandwidth continues to grow at approximately
70% per year, in-network computing is a promising paradigm for accelerating applications by performing
computations directly on heterogeneous programmable hardware such as field-programmable gate arrays
(FPGAs) and application-specific integrated circuits (ASICs).

While such programmable devices can be orders of magnitude faster than CPUs, a key challenge is
to implement various functions within limited resources and strict hardware constraints. For example,
although Intel’s Tofino programmable switching ASICs support packet processing speeds of up to 12.8
terabits per second (Tbps), their capabilities are limited by their only several hundred megabytes (MB)
of memory and a limited packet processing pipeline that supports only simple calculations. Therefore,
designing and analyzing algorithms within such limitations of programmable hardware is a challenging
and increasingly important topic in the systems and networking community, and corresponding theories
are valuable for addressing database, machine learning, data mining, and security problems. My research
focuses on develping algorithms and theory under strict constraints, which become key building blocks for
in-network computing systems.

In particular, I have designed in-network computing algorithms for membership queries (ChainedFil-
ter [1], SIGMOD 2024), frequency estimation (StingySketch [2], VLDB 2022), and collective communication
(Homomorphic Compression [3], preprint) problems with solid theoretical guarantees and system eval-
uations. All of these works address fundamental aspects of network functions - filtering, network mea-
surement, and in-network aggregation. They are based on increasingly complex mathematical definitions:
starting from a collection of key-value pairs, where the values are binary, the membership query algorithm
seeks to identify these pairs with minimal type I (false positive) error. As the range of values expands to
all integers and the values change dynamically, the focus shifts to frequency estimation. As the algorithm
continues to demand zero-error performance, it evolves into a homomorphic compression algorithm.

1 ChainedFilter: Compact In-network Membership Query
Given a collection of key-value pairs, where each value is either 0 or 1, a membership algorithm aims to
accurately identify these pairs, allowing for Type I (false positive) errors. The algorithm should correctly
report a value of one when the key value is one, and can report one with a false positive rate (ϵ) even when
the key value is zero. Such a membership algorithm plays an important role in networking, databases,
and security. For example, routers and switches use Bloom filters to classify, forward, and drop network
packets; LSM tree-based storage engines use learned filters to speed up K-V storage; bitcoin miners use
invertible Bloom lookup tables (IBLTs) to reduce the amount of information needed for block propagation
and reconciliation. However, although membership algorithms have been studied for over fifty years, the
space lower bound for general membership problems was unknown.

To address this, I developed a new data structure and algorithm called ChainedFilter, which provides the
space lower bound and gives a surprising theoretical result of membership. Let’s first consider a scenario
with n mappings to one and λn mappings to zero. We can express the space lower bound for this problem
as nf(ϵ, λ)+ o(n). It’s easy to see that the problem can be decomposed into two sub-problems: First, storing
the n one mapping and the λn zero mappings with a false positive rate of ϵ′ ∈ [ϵ, 1], and second, storing the
n one mappings and the ϵ′λn remaining false positive zero mappings with a false positive rate of ϵ/ϵ′. This
leads to the inequality f(ϵ, λ) ≤ f(ϵ′, λ) + f(ϵ/ϵ′, ϵ′λ). The main contribution of ChainedFilter is that the
proof of

f(ϵ, λ) = f(ϵ′, λ) + f(ϵ/ϵ′, ϵ′λ),

via information theory, indicating that the decomposition process described above involves zero information
loss. This discovery allows me to establish for the first time a complete space lower bound for general membership
problems, i.e., f(ϵ, λ) = f(0, λ) − f(0, ϵλ), after the expressions f(0, λ) and f(ϵ,+∞) were known in 1978. This



Haoyu Li – Research Statement

theory shows that by combining two sub-algorithms, an effective membership algorithm can be developed.
Both theoretical and experimental results show that this technique significantly improves the performance
of many fundamental applications, including static dictionaries, lossless data compression, cuckoo hashing,
learned filters, and LSM trees in RocksDB.

2 StingySketch: Fast and Accurate Network Measurement
Since membership algorithms only consider binary values, StingySketch extends the value range to all
integers and supports dynamic value updating to measure network traffic, which is also the basis for
finding top k items in NetCache, joining tables in databases, and multiset queries in data mining. The
literature shows that sketches are the most promising probabilistic algorithms in data streams because of
their compact space and O(1) time. However, in practice, existing sketches are unable to efficiently balance
accuracy and speed for common highly skewed data distributions.

In this work, I delve deeper into optimizing the algorithm by considering two key factors: data distri-
bution and memory access locality with a novel carry-in (overflow) mechanism based on in-order traversal
of the binary tree. Experimental results show that my technique achieves up to 50% more accuracy than
the state-of-the-art for accuracy-oriented algorithms and up to 33% more throughput than the SOTA for
speed-oriented algorithms.

3 Homomorphic Compression: Asymptotic Optimal In-network Aggregation
While StingySketch serves as a fast and accurate method for dimensionality reduction, in its capacity as a
data compression algorithm, it introduces a small loss of accuracy that can limit its applications. A case in
point is distributed deep neural network (DNN) training, where using sketches to compress gradients in
different worker nodes reduces communication overhead but may negatively impact model accuracy.

To address this challenge, my ongoing work on the Homomorphic Compression algorithm represents
a significant advance. It ingeniously blends concepts from membership, sketching, and peeling theories
to achieve zero loss. Using a strategy similar to ChainedFilter, our work achieves asymptotically optimal
lossless compression ratio and computational complexity, high parallelism, and excellent locality. These
properties are maintained over arbitrary data types and sparsity levels.

To demonstrate its effectiveness, I integrated my gradient aggregation algorithm into the most popular
NVIDIA Collective Communications Library (NCCL) and the ATP in-network aggregation framework in
PyTorch and conducted experiments on two distributed systems. I compared the distributed training
acceleration for different models: VGG19 with the Cifar10 dataset, LSTM with the GBW dataset, and BERT
with the Wikipedia dataset. Our evaluation shows that it improves the aggregation throughput by up to
6.33× and achieves a 3.74× speedup in per-iteration training speed in distributed training tasks.

4 Conclusion and Future Work
My theoretical background allows me to tackle fundamental system problems with new insights and
approaches. During my Ph.D., I plan to build high-throughput, low-latency systems for important applica-
tions such as LLM training and configurable networks and explore new networking technologies, including
SmartNIC, Compute Express Link (CXL) storage and optical networking, and turn them into impactful
real-world systems.
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